
A Diagnostic Assessment of Teachers’ 
Understandings of Rational Number 

Laine Bradshaw 
Assessment & Measurement, James Madison University 

Jonathan Templin  
Research, Evaluation, Measurement & Statistics, University of Georgia 

Andrew Izsák 
Mathematics Education, University of Georgia 

 

 



• Diagnosing Teachers’ Multiplicative Reasoning* (DTMR) 
» NSF funded grant (DRL-0903411)  

• Goal is to create a test that will assess fine-grained 
components of teachers’ reasoning multiplicatively with 
rational numbers 

• The test would be used to  
» Tailor professional development to teachers’ needs  

» Quantitatively study teachers’ fine-grained abilities to reason 
multiplicatively  
 Quantify findings based on extensive qualitative research base 

 Generalize to larger populations 

Introduction 

*Izsák, A., Lobato, J., Druken, B., Orrill, C., Jacobson, E., & Bradshaw, L. (2010, July). Applying cognitive diagnosis models to measure middle 
grades teachers’ multiplicative reasoning.  Paper presented at the annual International Meeting of the Psychometric Society in Athens, GA. 



• Most psychometric models are designed to measure a 
unidimensional continuous trait or ability 

• Examples of continuous traits 

» Student’s “math” ability at the 8th grade level 

» In-service teachers’ mathematical knowledge for teaching 
number and operations 
 The content area of focus for this study 

• As a result, many tests are designed to measure a 
unidimensional ability 

• This project took a different approach 

» A multidimensional diagnostic approach 

» Using a new class of psychometric models 

Big Picture 



• Instead of measuring an overall ability to reason multiplicatively 
with fractions, we can break that continuous trait down into more 
fine-grained cognitive facilities or attributes:  
» Ability to identify appropriate referent units for numbers 

» Ability to partition quantities and iterate unit fractions 

» Ability to identify appropriate arithmetic operations 

» Ability to make multiplicative comparisons 

• We treat these attributes as categorical 
» Dichotomous (have two categories) 

» Mastery of an attribute ( = 1) or non-mastery of an attribute ( = 0) 

 
 

 

Diagnosing Multiplicative Reasoning 
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• Diagnostic classification models (DCMs) are a set of 
statistical tools that provide diagnostic feedback 

• DCMs are well-aligned with educational assessment needs 

» We are trying to make decisions about examinees 

• A diagnosis is a decision 

» Is a student a master of a given standard? 

» Does a teacher need professional development on a given concept? 

• DCMs provide diagnoses by directly classifying examinees 
into groups according to categorical latent traits 

» Other psychometric model families rank-order examinees on 
continuous traits 

 

Diagnosis from a Psychometric Model 



Groups According to Attribute Mastery 

Pattern RU PI APP MC 

1 0 0 0 0 

2 0 0 0 1 

3 0 0 1 0 

4 0 0 1 1 

5 0 1 0 0 

6 0 1 0 1 

7 0 1 1 0 

8 0 1 1 1 

9 1 0 0 0 

10 1 0 0 1 

11 1 0 1 0 

12 1 0 1 1 

13 1 1 0 0 

14 1 1 0 1 

15 1 1 1 0 

16 1 1 1 1 

2𝐴 possible patterns or groups:   • The groups are based on 
patterns of mastery according to 
the set of attributes 

• A classification of each individual 
skill results in a classification into 
one of these 16 patterns 
 

 
 



• Diagnostic tests are written so that each item measures one or 
more of the attributes  

• The attributes measured by each item are recorded in a Q-matrix 
» Describes whether an item measures an attribute (q = 1) or not (q = 0)  

» Mapping is established by content experts 
 Confirmed by item response interviews 

• First several items on DTMR test:  

 RU PI APP MC 

Item 1 1 0 0 0 

Item 2 0 0 1 0 

Item 3 1 0 0 0 

Item 4 1 0 0 1 

Designing Diagnostic Tests 



A Model of the DTMR Diagnostic Test 

PI APP MC RU 

24 Items 

15 Items 8 Items 5 Items 9 Items 

RU/PI  
Statistically 
Significant 
Interaction  

RU/MC  
Statistically 
Significant 
Interaction  



Log-linear  
Cognitive Diagnosis Model 



Log-linear Cognitive Diagnosis Model (LCDM) 
 

*Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. 
Psychometrika, 74, 191-210. 

• The Log-linear Cognitive Diagnosis Model* (LCDM) 
» Parameterizes DCMs using a linear model framework 

» Can be compensatory or non-compensatory at the item level 

» Can be estimated using Mplus 

• The item response is predicted as a function of the set of 
attributes that is measured by that item  
» Mastering additional attributes should increase the probability of 

answering the item correctly 

• Attributes are categorical latent variables 
» Linear predictor is like ANOVA 

• Responses are (typically) binary: correct or incorrect 
» Logit link function like logistic regression 

 



e Examinee 

i Item 

α (Alpha) Attribute (Categorical Latent Trait) 

λ (Lambda) Loading (Coefficient) 

Notation 



Example Item 
• This item is analogous to Item 22 on the DTMR test 

» Measures Referent Unit (Attribute 1) and Partitioning and Iterating (Attribute 2)   

 



RU PI APP MC 

Item 22 1 1 0 0 

)()()( 21)12(2,2)2(1,1)1(1,0, eeieieii  

• Referent unit (α1) and partitioning and iterating (α2 ) are measured 
• Q-matrix entries:  

 
 
 
 

• LCDM item response function: 

LCDM Example Item Response Function 

 Intercept 
(Guessing)  

 Main Effect  
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 Main Effect 
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• On the logit scale, we can see the main effects are positive and 
the interaction is positive (similar to ANOVA methods) 

• Item parameters provide construct validation 
• Is the item actually measuring the attribute?  
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LCDM Example Item Response Function 
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DTMR Preliminary Results 



• Data Collection 

• Items 

» How well did they function? 

• Attribute Patterns 

» How many teachers are masters of each attribute? 

» What are the attribute mastery probabilities for a single 
teacher? 

• Attribute Correlations 

» How highly correlated are the attributes? 

» Are any attributes dependent on another? 

 

Results Overview 



• National sample of 692 in-service middle grades 
mathematics teachers 

• Sample stratified by  
» Region of the country (4 levels) 

 Northeast, Midwest, South, West 

» Urban-centric locale (12 levels) 
 City or suburb 

♦ Small, medium, large 

 Town or rural 
♦ Fringe, distant, remote 

• Response rate: ≈20% 
» Received 692 of 5400 teachers (so far) 

Data Collection 



• For “good” items, masters of the attribute(s) answer the 
item correctly and non-masters answer the item incorrectly 

» This would yield high discrimination, or differences in the probability 
masters and non-masters answer the item correctly 

Item Discrimination 

Discrimination 
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62% Masters 
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Attribute Patterns of Mastery  

29% Masters 

Attribute 1: Referent Unit Attribute 2: Partitioning & Iterating  

55% Masters 65% Masters 

Attribute 3: Appropriateness Attribute 4: Multiplicative Comparisons 
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% Masters 

Individual Attribute Mastery 

29% 

55% 

65% 62% 

• Information useful for  

– Tailoring professional development 
• Many teachers may benefit from professional development  on referent unit 

– Understanding base-rates of attribute mastery in the population of  
in-service teachers 
• Quantitative Research  

 



• Comparison of total scores and DCM diagnosis: 

» Teacher A and Teacher B both answered 8 out of 24 items correctly 

» Teacher A has attribute pattern [0100] 

» Teacher B has attribute pattern [0011] 

 Need different types of professional development 

Teacher-level Individual Attribute Feedback 
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• The attribute patterns are reflections of the correlations 
among the latent variables 

» Tetrachoric correlations (between categorical variables) 

» The relationships among the attributes are parameterized 
through a log-linear structural model  

Attribute Correlations 

PI APP MC RU 

.70 .73 .76 

.47 .70 

.57 
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Attribute Patterns of Mastery  
• Observed patterns make you wonder if Attribute 1, Referent Unit, is 

dependent upon other attributes 
» 7% of students mastered Referent Unit without being a master of all other 3 

» 3.4% mastered Referent Unit (𝛼1) without Partitioning & Iterating (𝛼2)  

» 1.7% mastered Referent Unit (𝛼1) without Appropriateness (𝛼3)  

» 3.8% mastered Referent Unit (𝛼1) without Multiplicative Comparison (𝛼4)  

 

 

 

  

 7% 



• We tested the following hierarchies using the Hierarchical 
Diagnostic Classification Model* (HDCM) 
– All hierarchies fit significantly worse (p<.001) than the no hierarchy 

    No Hierarchy        Hierarchy 1    Hierarchy 2 

 

 

 

 

    Hierarchy 3   …       Hierarchy 7 

 

 

 

 
 

 

Attribute Hierarchies 

*Templin, J., & Bradshaw, L. (2011). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute 
hierarchies. Manuscript under review. 
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• This presentation has focused on the contributions of 
this project to mathematics education research base 
and use in mathematics education 

• This project is also one of the first efforts to 
prospectively diagnose attributes 

» Further unique in that the attributes are cognitive in nature 
and very fine-grained 

» Helpful to have a model of how to do this in practice for the 
field of psychometrics  
 Especially since “it” worked! 

 

Not Just New to Mathematics Education… 



Thank you! 

If you have questions or comments, 
please feel free to email me:  

bradshlp@jmu.edu 


