A Diagnostic Assessment of Teachers' Understandings of Rational Number

Laine Bradshaw

Assessment & Measurement, James Madison University

Jonathan Templin

Research, Evaluation, Measurement & Statistics, University of Georgia

Andrew Izsák

Mathematics Education, University of Georgia

Introduction

- Diagnosing Teachers' Multiplicative Reasoning* (DTMR)
 - » NSF funded grant (DRL-0903411)
- Goal is to create a test that will assess fine-grained components of teachers' reasoning multiplicatively with rational numbers
- The test would be used to
 - » Tailor professional development to teachers' needs
 - » Quantitatively study teachers' fine-grained abilities to reason multiplicatively
 - Quantify findings based on extensive qualitative research base
 - Generalize to larger populations

Big Picture

- Most psychometric models are designed to measure a unidimensional continuous trait or ability
- Examples of continuous traits
 - » Student's "math" ability at the 8th grade level
 - » In-service teachers' mathematical knowledge for teaching number and operations
 - The content area of focus for this study
- As a result, many tests are designed to measure a unidimensional ability
- This project took a different approach
 - » A multidimensional diagnostic approach

Diagnosing Multiplicative Reasoning

- Instead of measuring an overall ability to reason multiplicatively with fractions, we can break that continuous trait down into more fine-grained cognitive facilities or attributes:
 - » Ability to identify appropriate referent units for numbers
 - » Ability to **partition** quantities and **iterate** unit fractions
 - » Ability to identify appropriate arithmetic operations
 - » Ability to make multiplicative comparisons
- We treat these attributes as categorical
 - » Dichotomous (have two categories)
 - » Mastery of an attribute (= 1) or non-mastery of an attribute (= 0)

Diagnosis from a Psychometric Model

- Diagnostic classification models (DCMs) are a set of statistical tools that provide diagnostic feedback
- DCMs are well-aligned with educational assessment needs
 - » We are trying to make decisions about examinees
- A diagnosis is a decision
 - » Is a student a master of a given standard?
 - » Does a teacher need professional development on a given concept?
- DCMs provide diagnoses by directly classifying examinees into groups according to categorical latent traits
 - » Other psychometric model families rank-order examinees on continuous traits

Groups According to Attribute Mastery

- The groups are based on patterns of mastery according to the set of attributes
- A classification of each individual skill results in a classification into one of these 16 patterns

 2^A possible patterns or groups:

Pattern	RU	PI	APP	MC
1	0	0	0	0
2	0	0	0	1
3	0	0	1	0
4	0	0	1	1
5	0	1	0	0
6	0	1	0	1
7	0	1	1	0
8	0	1	1	1
9	1	0	0	0
10	1	0	0	1
11	1	0	1	0
12	1	0	1	1
13	1	1	0	0
14	1	1	0	1
15	1	1	1	0
16	1	1	1	1

Designing Diagnostic Tests

- Diagnostic tests are written so that each item measures one or more of the attributes
- The attributes measured by each item are recorded in a Q-matrix
 - » Describes whether an item measures an attribute (q = 1) or not (q = 0)
 - » Mapping is established by content experts
 - Confirmed by item response interviews
- First several items on DTMR test:

	RU	PI	APP	MC
Item 1	1	0	0	0
Item 2	0	0	1	0
Item 3	1	0	0	0
Item 4	1	0	0	1

A Model of the DTMR Diagnostic Test

Log-linear Cognitive Diagnosis Model

Log-linear Cognitive Diagnosis Model (LCDM)

- The Log-linear Cognitive Diagnosis Model* (LCDM)
 - » Parameterizes DCMs using a linear model framework
 - » Can be compensatory or non-compensatory at the item level
 - » Can be estimated using Mplus
- The item response is predicted as a function of the set of attributes that is measured by that item
 - » Mastering additional attributes should increase the probability of answering the item correctly
- Attributes are categorical latent variables
 - » Linear predictor is like ANOVA
- Responses are (typically) binary: correct or incorrect
 - » Logit link function like logistic regression

Notation

e	Examinee
i	Item
α (Alpha)	Attribute (Categorical Latent Trait)
λ (Lambda)	Loading (Coefficient)

Example Item

- This item is analogous to Item 22 on the DTMR test
 - » Measures Referent Unit (Attribute 1) and Partitioning and Iterating (Attribute 2)

LCDM Example Item Response Function

- Referent unit (α_1) and partitioning and iterating (α_2) are measured
 - Q-matrix entries:

	RU	PI	АРР	MC
Item 22	1	1	0	0

• LCDM item response function:

$$\log \frac{P(X_{ei}=1\,|\,\alpha_e)}{P(X_{ei}=0\,|\,\alpha_e)} = \lambda_{i,0} + \lambda_{i,1(1)}(\alpha_{e1}) + \lambda_{i,1(2)}(\alpha_{e2}) + \lambda_{i,2(12)}(\alpha_{e1}\cdot\alpha_{e2})$$
 Intercept Main Effect Main Effect Interaction (Guessing) (RU) (PI) (Between RU and PI)

LCDM Example Item Response Function

$$\log \frac{P(X_{ei} = 1 \mid \alpha_e)}{P(X_{ei} = 0 \mid \alpha_e)} = -.871 + .146(\alpha_{e1}) + .991(\alpha_{e2}) + 1.415(\alpha_{e1} \cdot \alpha_{e2})$$

- On the logit scale, we can see the main effects are positive and the interaction is positive (similar to ANOVA methods)
- Item parameters provide construct validation
 - Is the item actually measuring the attribute?

DTMR Preliminary Results

Results Overview

- Data Collection
- Items
 - » How well did they function?
- Attribute Patterns
 - » How many teachers are masters of each attribute?
 - » What are the attribute mastery probabilities for a single teacher?
- Attribute Correlations
 - » How highly correlated are the attributes?
 - » Are any attributes dependent on another?

Data Collection

- National sample of 692 in-service middle grades mathematics teachers
- Sample stratified by
 - » Region of the country (4 levels)
 - Northeast, Midwest, South, West
 - » Urban-centric locale (12 levels)
 - City or suburb
 - Small, medium, large
 - Town or rural
 - Fringe, distant, remote
- Response rate: ≈20%
 - » Received 692 of 5400 teachers (so far)

Item Discrimination

- For "good" items, masters of the attribute(s) answer the item correctly and non-masters answer the item incorrectly
 - » This would yield high discrimination, or differences in the probability masters and non-masters answer the item correctly

Attribute Patterns of Mastery

Individual Attribute Mastery

- Information useful for
 - Tailoring professional development
 - Many teachers may benefit from professional development on referent unit
 - Understanding base-rates of attribute mastery in the population of in-service teachers
 - Quantitative Research

Teacher-level Individual Attribute Feedback

- Comparison of total scores and DCM diagnosis:
 - » Teacher A and Teacher B both answered 8 out of 24 items correctly
 - » Teacher A has attribute pattern [0100]
 - » Teacher B has attribute pattern [0011]
 - Need different types of professional development

Attribute Correlations

- The attribute patterns are reflections of the correlations among the latent variables
 - » Tetrachoric correlations (between categorical variables)
 - » The relationships among the attributes are parameterized through a log-linear structural model

Attribute Patterns of Mastery

- Observed patterns make you wonder if Attribute 1, Referent Unit, is dependent upon other attributes
 - » 7% of students mastered Referent Unit without being a master of all other 3
 - » 3.4% mastered Referent Unit (α_1) without Partitioning & Iterating (α_2)
 - » 1.7% mastered Referent Unit (α_1) without Appropriateness (α_3)
 - » 3.8% mastered Referent Unit (α_1) without Multiplicative Comparison (α_4)

Attribute Hierarchies

- We tested the following hierarchies using the Hierarchical Diagnostic Classification Model* (HDCM)
 - All hierarchies fit significantly worse (p<.001) than the no hierarchy

^{*}Templin, J., & Bradshaw, L. (2011). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Manuscript under review.

Not Just New to Mathematics Education...

- This presentation has focused on the contributions of this project to mathematics education research base and use in mathematics education
- This project is also one of the first efforts to prospectively diagnose attributes
 - » Further unique in that the attributes are cognitive in nature and very fine-grained
 - » Helpful to have a model of how to do this in practice for the field of psychometrics
 - Especially since "it" worked!

Thank you!

If you have questions or comments, please feel free to email me: bradshlp@jmu.edu